Creating Wealth from Waste and Alternative Resources

Prof M Akbar Rhamdhani

Department of Mechanical and Product Design Engineering

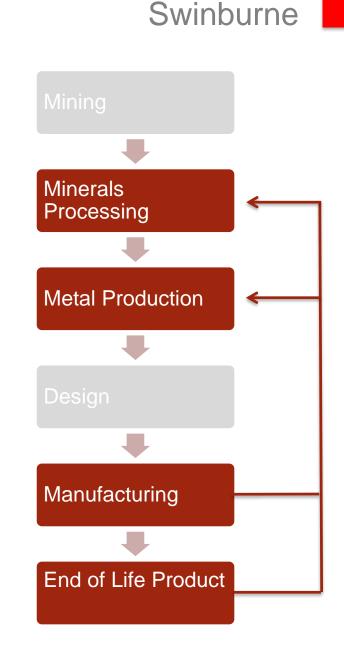
2nd Annual Symposium on Solid Waste Refinery, UGM

Yogyakarta, 13 November 2019

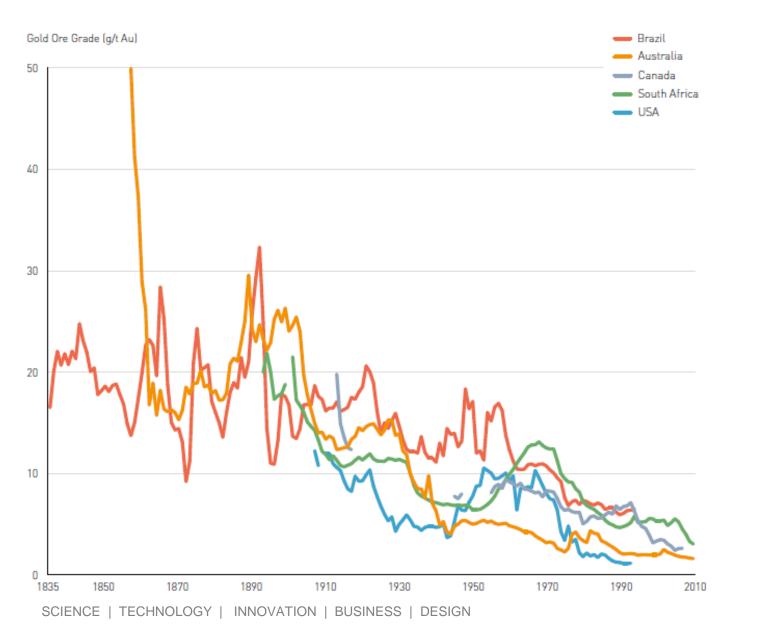
SWINBURNE UNIVERSITY OF TECHNOLOGY

CRICOS Provider 00111D

Swinburne • think forward


Current Research Focus / Context

Prof Akbar Rhamdhani FPD (Fluid and Process Dynamics) Research Group Leader Advanced High Temp Refining and Impurities Removal, Processing of Secondary Resources, Metal Recycling


Extractive Metallurgy for Resource Efficiency and Circular Economy

- Processing of Alternative Sources (Low Grade and Urban Ores)
- Metals Recovery/Recycling from Wastes
- Advanced Refining and Extraction Process
- Impurities Removal and Ultrapure Materials
- New Processes with Low Carbon Footprint

Declining Metal Ore Grade Worldwide

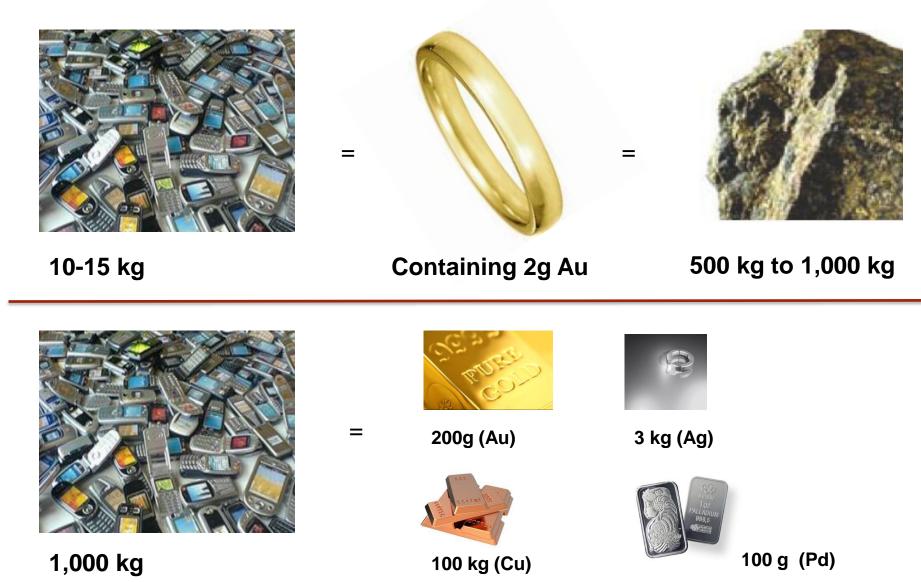
Swinburne

UNEP. Recycling Rates of Metals – A status report, A report of the Working Group on the Global Metal Flows to the International Resource Panel, T.E. Graedel, et al. (2011)

Resource Efficiency and Circular Economy Swinburne Context

Lowering of the grade of ores around the world

Availability of alternative resources for metals


- Low grade/weathered ores
- o Urban ores
 - o Industrial Wastes
 - Consumer/household Wastes
 - o Construction Wastes
 - End of Life Products
 - Electronic wastes

Electronic wastes

- 40 million tonnes are generated annually (global)
- Great challenges and also opportunities
- o <u>Contain:</u> Precious, Platinum Group, Base, Hazardous, and Rare Metals

Alternative Metal Ore Resources

Swinburne

What is E-Waste

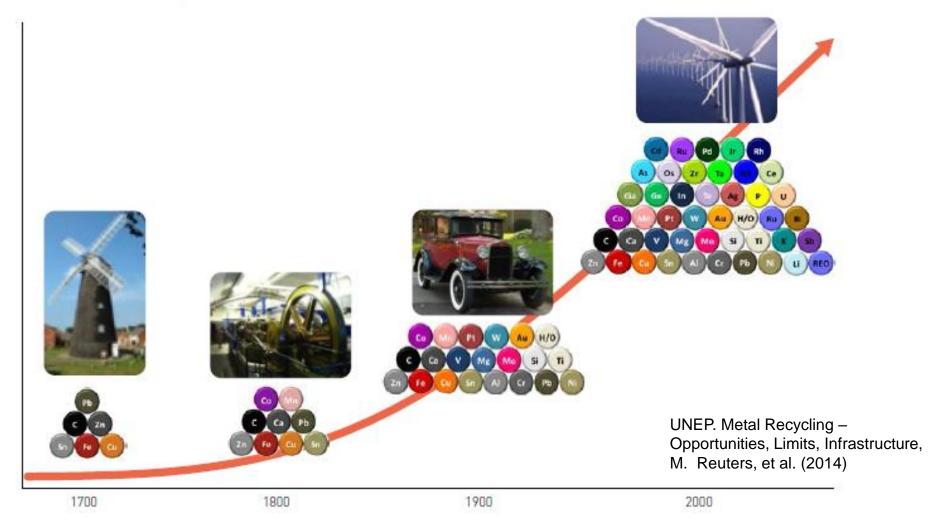
Weight versus value distribution in E-Waste

Weights %	Fe	AI	Cu	Plastics	Ag	Au	Pd
weights /	(wt %)	(wt %)	(wt %)	(wt %)	(ppm)	(ppm)	(ppm)
TV-board	28%	10%	10%	28%	280	20	10
PC-board	7%	5%	20%	23%	1000	250	110
Mobile phone	5%	1%	13%	56%	1380	350	210
Portable audio	23%	1%	21%	47%	150	10	4
DVD-player	62%	2%	5%	24%	115	15	4
Calculator	4%	5%	3%	61%	260	50	5
Value-share	Fe	AI	Cu	Sum Precious Metals	Ag	Au	Pd
TV-board	4%	11%	42%	43%	8%	27%	8%
PC-board	0%	1%	14%	85%	5%	65%	15%
Mobile phone	0%	0%	7%	93%	5%	67%	21%
Portable audio	3%	1%	77%	19%	4%	13%	2%
DVD-player	13%	4%	36%	47%	5%	37%	5%
Calculator	0%	5%	11%	84%	7%	73%	4%

Swinburne

Complex microstructures

 Contain remarkably different components, e.g. plastics (hydrocarbons), glass (oxides), metals (ferrous and non-ferrous), and other components


Complex compositions

- The metals of interests are usually in minor proportion (very low concentration)
- They contain **large number of elements** (including valuable and hazardous substances), e.g. more than 40 metals on a cell phone
- Varies for different locations, products, and time

Increased Materials Complexity

Swinburne

Metal/Element Use Intensity in Products

Technical Challenges

Fundamental knowledge

- A limited fundamental knowledge about this "new" complex materials and how to effectively process them
 - Thermodynamics, Kinetics, Separation, Refining, Extraction, and Materials etc

Processing Technologies and Routes

- O Extensive pre-processing and main extraction processes → longer overall process chains
- Development of new or modification of existing technologies and processes that is sustainable (economically and environmentally acceptable)
 - Systematic analyses of modified or new technologies and process routes, in terms of techno-economic, impact to environment (e.g. life cycle assessment), scale up from laboratory to full size plant, and feasibility, need to be considered

Non-Technical Challenges

Overall economic of the process

- This often becomes the main driving force
- New and innovative business models may also need to be developed to shift towards more economical process

Infrastructure and logistics

- Facilities for pre-processing, in addition to the main extraction processes facilities
- A good collection system, e.g. the network of collection, transportation of the resources and associated costs
- Consideration of the size of the facilities, from a small scale citybased to a large scale integrated smelting-recycling plants

Non-Technical Challenges

Swinburne

Government systems

- Governmental policies and legislation to promote and drive the market for processing towards the alternative resources
- Provide a framework for the development of innovative business models
- Government incentives

Social/socioeconomic challenges

- Education and information flow in the society about recycling and underlying wealth associated with the above ground "waste"
- Different paradigms and cultures within the society that can act as a barrier

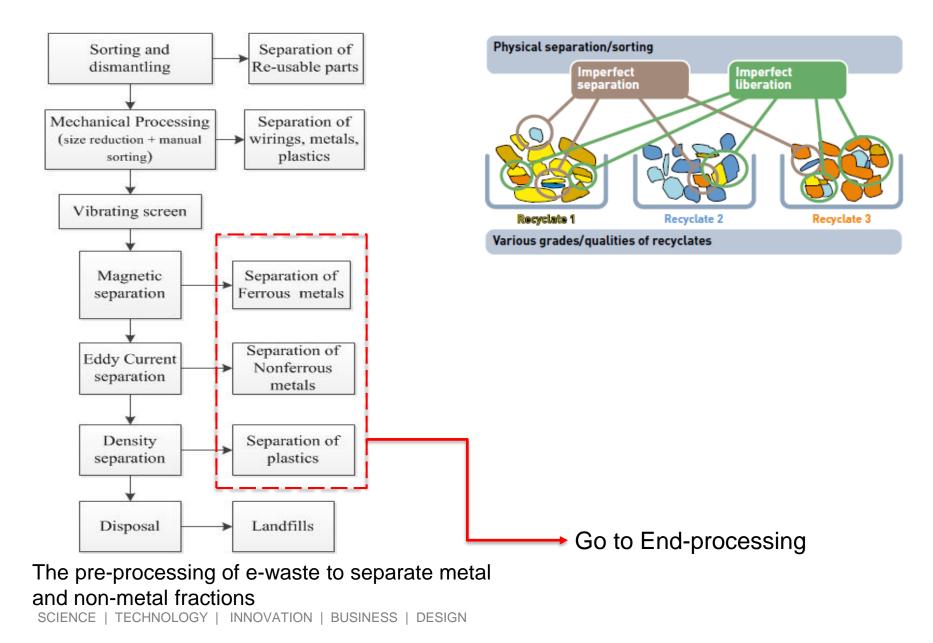
General Steps in Processing of E-Waste

Swinburne

Collection

- Government policies
- Public awareness
- Easy access to collection facilities

Pre-processing


- Using similar method used in physical processing of ores
- Sorting and dismantling (manual vs automatic)
- Materials liberation (housing, wiring boards, drives)
- Mechanical processing (shredder, hammer mills)
- Separation of metals and non-metals (screening, magnetic, eddy current, density separation)

End-processing

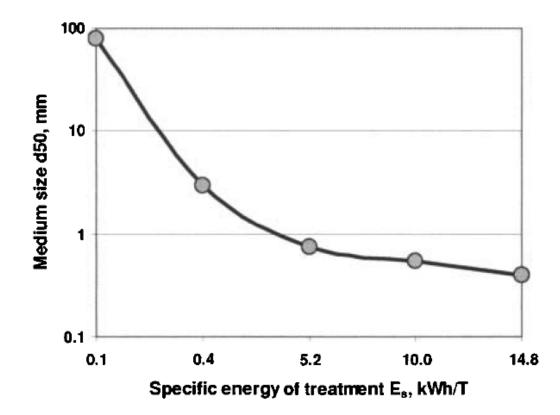
- Further processing of non-metal and metal fractions
- Metallurgical processes to recover metals

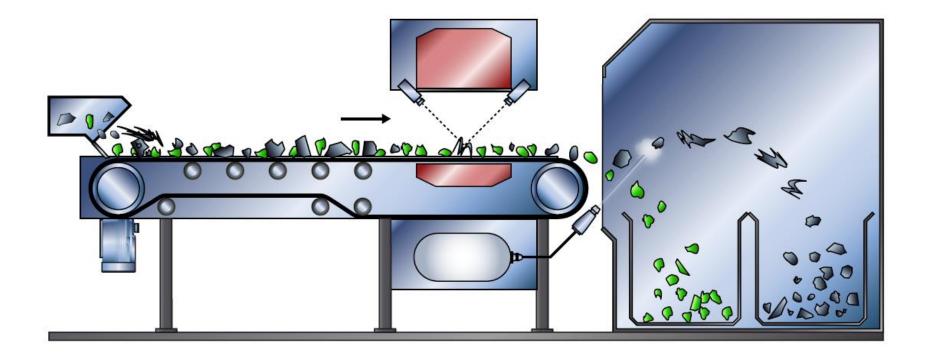
Pre-Processing of E-Waste

Swinburne

Pre-Processing of E-Waste

Particle size vs specific energy of treatment of PCB



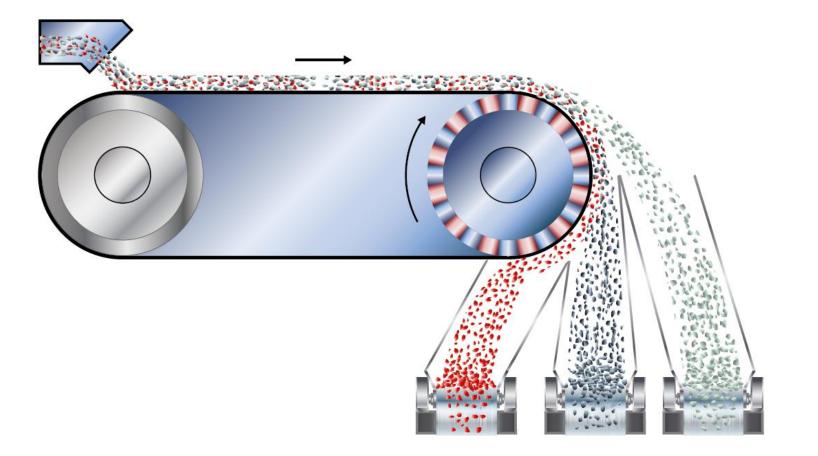

Fig. 2. Dependence of the particles medium size of PCBs on the specific energy of treatment

Laurmaa et al. TMS 2011

Swinburne

Physical Separation Processes

Sensor-based sorter

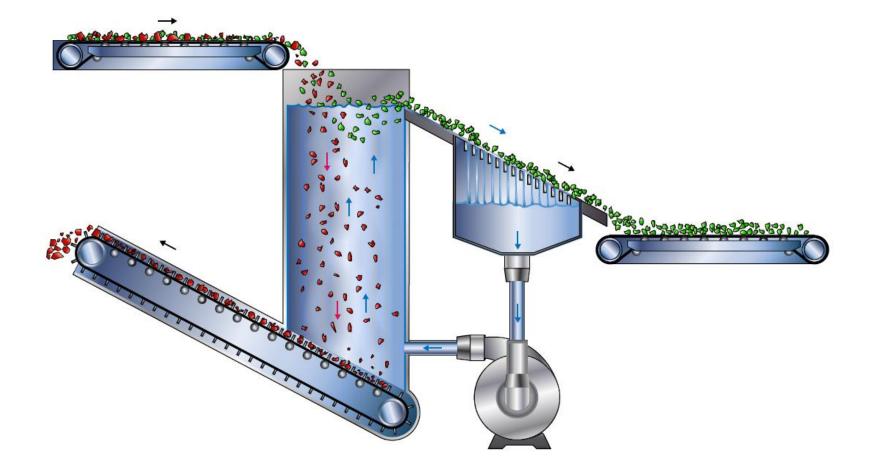


UNEP. Metal Recycling – Opportunities, Limits, Infrastructure, M. Reuters, et al. (2014)

Swinburne

Physical Separation Processes

Eddy Current separator



UNEP. Metal Recycling – Opportunities, Limits, Infrastructure, M. Reuters, et al. (2014)

Swinburne

Physical Separation Processes

Rising-Current separator

UNEP. Metal Recycling – Opportunities, Limits, Infrastructure, M. Reuters, et al. (2014)

Swinburne

Hydrometallurgical routes

- Pre-processing and leaching using acid/caustic solutions
- Separation of precious metals from leachants using solvent extraction, adsorption, and ion exchange methods
- Metals extraction processes are similar to mineral processing

Pyrometallurgical routes

- Pre-processing is not necessary for small devices
- Direct feeding into furnace at high temperature
- Metal fraction end up in molten bath
- Plastics partially replace coke and act as reducing agent and fuel
- Oxides end up in slag phase

Hydrometallurgy Route

Investigators	Leaching agent	Process conditions	Recovered metals
Park and Fray [41]	Aqua regia	Ratio of metals to leachant = 1:20 g/ml	Au, Ag, Pd
Sheng and Estell [50]	HNO ₃ (1 st stage), Epoxy resin (2 nd stage), Aqua regia (3 rd stage)	Extraction was carried out in three stages (Self agitation)	Au
Quinet et al [<u>51</u>]	H ₂ SO ₄ , Chloride, thiourea, cyanide leaching	Leaching & metals recovery by cementation, precipitation, ion exchange and carbon adsorption	Au, Ag, Pd, Cu
Chielewski et al [52]	HNO ₃ Aqua regia	Roasting of E-waste in the presence of carbon Leaching with HNO ₃ and aqua regia Solvent extraction with diethyle malonate	Au
Zhou et al [53]	HCI, H ₂ SO ₄ NaClO ₃	Combustion of E-waste at 400-500°C followed by leaching.	Ag, Au, Pd
Kogan [<u>54]</u>	HCI, MgCl ₂ , H ₂ SO ₄ H ₂ O ₂	Dissolution of E-waste in different solvents and conditions Recovery of metals in stages	Al, Sn, Pb and Zn (1 st stage), Cu and Ni (2 nd stage), Au, Ag, Pd and Pt (last stage)
Veit et al [11]	Aqua regia H ₂ SO ₄	Mechanical processing and then dissolution of e- waste in different solvents	Cu
Mecucci and Scott [55]	HNO ₃	Electrochemical deposition of Cu at cathode from solution	Pb, Cu

Table 7: Summary of hydrometallurgical recovery of precious metals from e-waste (Khaliq et al 2014)

Limitations of Hydrometallurgy Route

- In general slow and time consuming \rightarrow impact on recycling economy
- Longer mechanical pre-processing of e-waste to reduce size for efficient dissolution. 20% precious metal could be lost during liberation process
- Problems associated with leachant
 - cyanide hazardous, environmentally unfriendly
 - halide corrosive and oxidizing
 - thiourea high cost and consumption
 - thiosulfate high consumption
- There are possibilities of precious metals loss during dissolution and subsequent steps, therefore the overall recovery of metals will be affected

Pyrorometallurgy Route

- The use of high temperature to process E-waste
- Smelting in furnaces, incineration, combustion and pyrolysis
- Liberation, separation/upgrading and purification are carried out by exploiting metals chemical and metallurgical properties, e.g. precious metals are segregated into copper or lead → make a precious metals "concentrate" using metal carrier
- Currently, copper and lead smelters work as e-waste recyclers for the recovery of Pb, Cu and precious metals
- Understanding of thermodynamics and process metallurgy are required to optimize process

Copper Smelting Route

Primary Copper Production Route

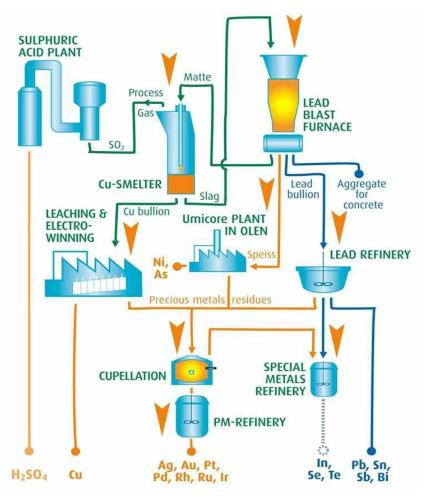
- Sulphide ores processed to produce copper matte (40%Cu) then to blister copper (98.5%). Finally, blister copper is refined by fire refining and electrorefining to produce pure copper

Secondary Copper Production Route

- e.g. the black copper route
- consists of reduction and oxidation cycles
- followed by refining in anode furnace and electrorefining to produce pure copper
- The precious metals go with the copper, and segregated into anode slime after the electrorefining and further processes for recovery

Industrial Processes for Recovery of Metals from E-Waste Copper Smelting Route

- Umicore integrate smelting and refining facility, Belgium


Swinburne

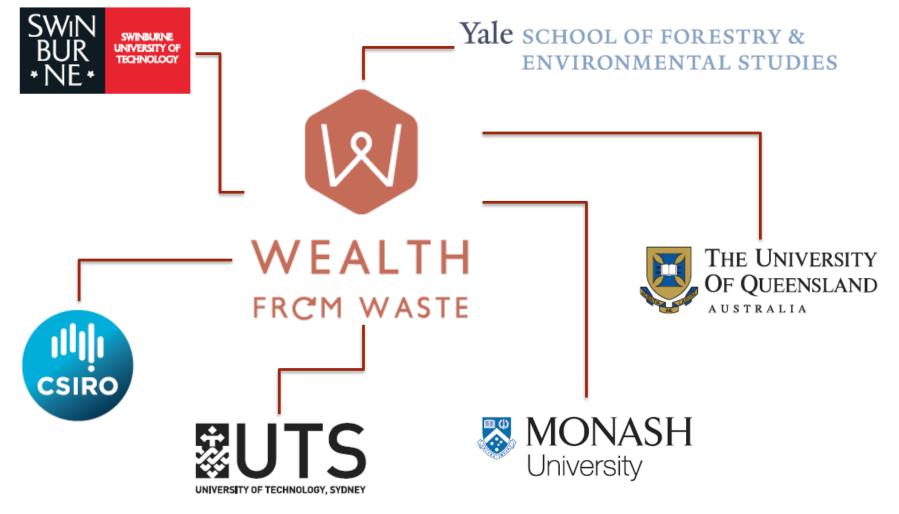
- Noranda process in Quebec, Canada
- Rönnskär smelters in Sweden
- Kosaka recycling plant in Japan
- Kayser recycling system KRS in Austria and Germany
- Metallo-Chimique N.V plants in Belgium and Spain

Integrated Smelting and Refining

Swinburne

A flowsheet for Umicore's integrated metals smelter and refinery, Hageluken (2006)

Aerial view of Umicore plant at Hoboken/Antwerp, Hageluken and Corti (2010)


Integrated Smelting and Refining

Summary of selected pyrometallurgical methods for recovery of metals from e-waste

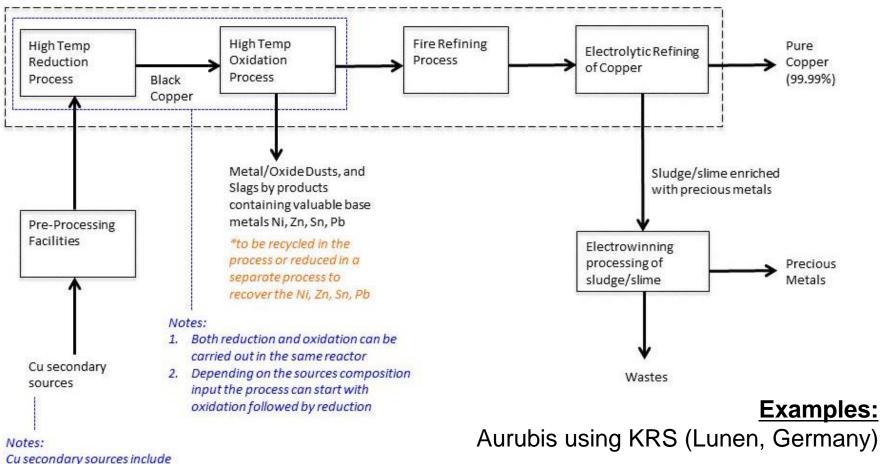
Industrial processes	Metals recovered	Main process features
Umicore's process [<u>20, 63, 64]</u>	Au, Ag, Pd, Pt, Se, Ir, Ru, Rh, Cu, Ni, Pb, In, Bi, Sn, As, Sb	IsaSmelt smelting, copper leaching & electrowinning and precious metals refinery
Outotec TSL [68]	Zn, Cu, Au, Ag, In, Pb, Cd, Ge	Top submerged lanced furnace (Ausmelt TSL), Smelting of e- waste in copper/lead/zinc processes
Rönnskär smelters [<u>66, 69]</u>	Cu, Ag, Au, Pd, Ni, Se, Zn, Pb	Smelting in Kaldo reactor, upgrading in copper and followed by refining, high precious metals recovery
Noranda process [67]	Cu, Au, Ag, Pt, Pd, Se, Te, Ni	Smelting of e-waste and Cu concentrate. Upgrading in converter and anode furnaces. Electrorefining for metal recovery
Rönnskär smelters [66, 70]	Cu and precious metals	PC scrap feeding to Zn fuming process, Plastics is used as reducing agent, Precious metals are segregated in Cu and are recovered at later stage
Umicore's trials [71]	Au, Ag, Pd, Pt, Se, Ir, Ru, Rh, Cu, Ni, Pb, In, Bi, Sn, As, Sb	Plastics from e-waste is tested at energy and reducing agent during smelting
Dowa mining Kosaka Japan [72]	Cu, Au, Ag	E-waste smelting in copper flash converter
LS-Nikko,s recycling facility, Korea [73]	Au, Ag & PGMs metals	Recycling in TSL smelting followed by electrolytic refining
Day's patent [74]	Precious metals, Pt and Pd	Smelting in plasma arc furnace at 1400°C. Precious metals collected in base metal. Ceramic residue went in the slag phase. Ag and Cu used to collect metals during process
Aleksandrovich patent [75]	PGMs and gold	Scrap combustion in a base metal using carbon as reducing agent, Solidification and separation of solidified product are carried out by formed phase boundaries
Aurubis recycling Germany [<u>76</u>]	Cu, Pb, Zn, Sn and PMs	Smelting of Cu and e-waste in TSL reactor, black copper processing and finally electrorefining

Research Cluster Wealth from Waste in Swinburne Australia

Research Cluster Wealth from Waste

Approach

- Swinburne
- 1. Evaluation of the various existing processes, technologies, and process routes ^{1,2}
- 2. Select a potential process route to be further investigated / studied
 - Technologically feasible
 - High potential to deliver a bigger impact
 - Deliver value, flexible process, economically viable, environmentally acceptable

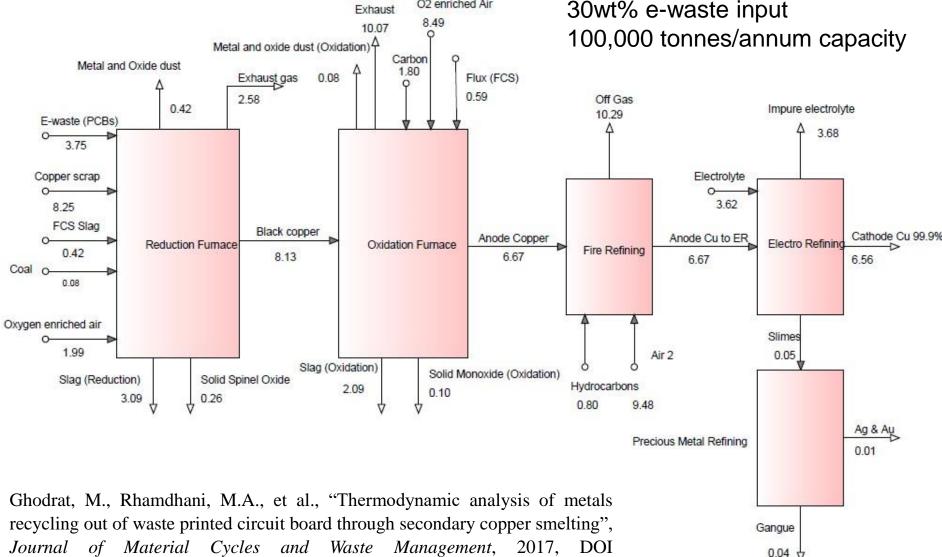

3. Carry out combined thermodynamics, process flowsheeting, technoeconomic and life cycle assessment modelling studies

- 1. A. Khaliq, M.A. Rhamdhani, et al, "Metal Extraction Processes for Electronic Waste and Existing Industrial Routes: A Review and Australian Perspective", *Resources*, 3(1), 2014, 152-179 (+ 53,000 downloaded)
- 2. M. Firdaus, M.A. Rhamdhani, et al, "Review of High Temperature Recovery of Rare Earth (Nd/Dy) from Magnet Waste", *Journal of Sustainable Metallurgy*, 2(4), Dec 2016, 276-95.

Selected Process Route

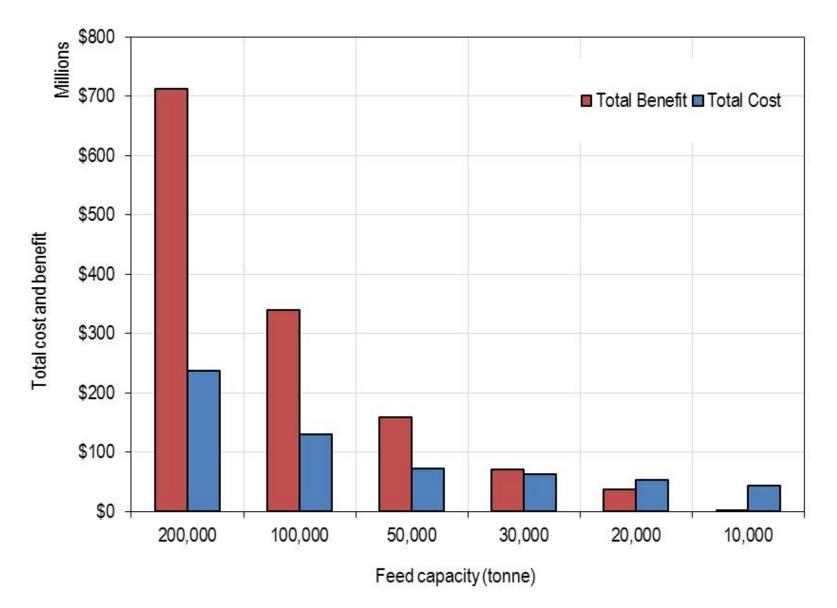
Boliden Rönnskär (Sweden)

Black Copper Smelting Route

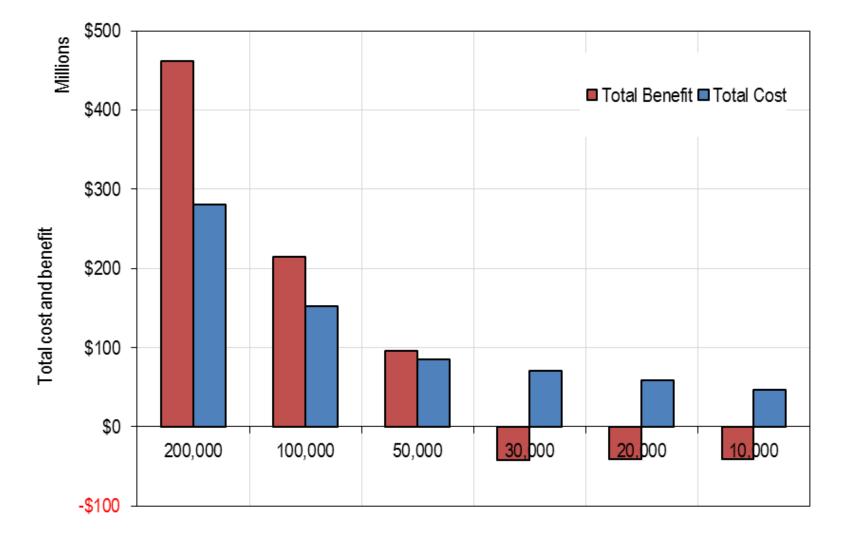


Cu secondary sources inclu

- E-waste
- Metallurgical waste (high Cu-containing slag, anode slimes)
- Industrial waste (copper sheeting, bars, pipes)
- Consumer waste (brass, bronze)


These sources may contain other valuable base and precious metals (Ni, Zn, Sn, Pb, and precious metals)

Process Flowsheet: Mass and Energy Swinburne Balance


10.1007/s10163-017-0590-8.

Effect of Production Scale on the Economic Swinburne

Effect of Transportation Cost

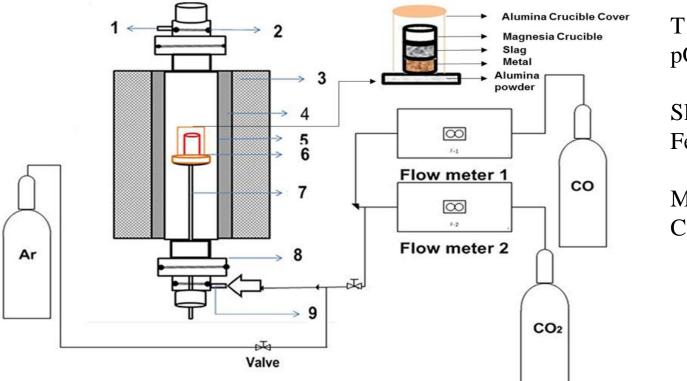
Swinburne

Feed capacity (tonne)

50wt% e-waste input

Challenges in Thermodynamic

Swinburne


Table IX Summary of previous work of trace valuable elements distribution in primary and secondary copper smelting

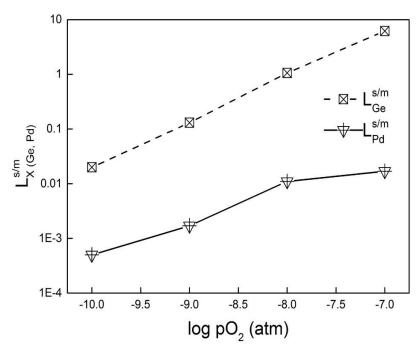
Metal	Primary Copper Processing	Ref.	Secondary Copper Processing	Ref.
Ag	Data available	[21-22,26,35-36,38, 40,42,44,51-54]	No data available	-
Pt	Limited data available (matte- slag system)	[53,70-72]	No data available	-
Pd	Limited data available (matte- slag system)	[53,70-72]	No data available	-
Rh	Limited data available (matte- slag system)	[53,72]	No data available	-
Se	Data available	[26,34-36, 59-61,63-65]	No data available	-
Te	Data available	[26,34-36, 59, 61, 63-64]	No data available	-
Sn	Data available	[21,22,26,35-37, 40-45, 49-50]	One data available	[45]
In	Very limited data available	[29]	One data available	[15]
Pb	Data available	[21-22,26-27,35-36,75-80]	No data available	-
Bi	Data available	[21-22,26-27,35-36,63,75,91,93-94]	No data available	-
As	Data available	[21-21,26-27,35-36,63,75-76,79, 91,93,95-96]	No data available	-
Sb	Data available	[21-22,26-27,35-36,41,63,75,76,79, 91,93-96]	No data available	-
Со	Data available	[35,81-85]	No data available	-
Ge	No data available	-	No data available	-
Ga	No data available	-	No data available	-

M.A.H. Shuva, M.A. Rhamdhani, et al, "Thermodynamics data of valuable elements relevant to e-waste processing through primary and secondary copper production – a review", *Journal of Cleaner Production*, 2016, Vol. 131, pp.795-809

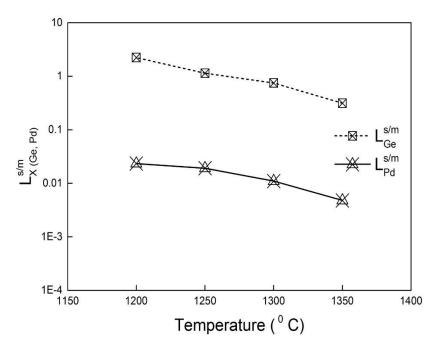
Thermodynamic Behavior of Valuable Elements during Black Copper Smelting

Swinburne

 $T = 1200 - 1350^{\circ}C$ $pO_2 = 10^{-7} - 10^{-10} \text{ atm}$


Slag: FeO_x-CaO-SiO₂-MgO

Metal; Cu/Ge, Cu/Pd, Cu/Ta


Fig. 6: A schematic of vertical tube furnace with experimental set up

Legend : 1. Gas outlet, 2. Silicone O ring 3. Mo_{Si_2} heating element 4. Alumina Tube 5. Mullite Tube 6. Magnesia Crucible 7. Alumina Pedestal 8. Water Cooled Flange 9. Gas Inlet

Effect of Oxygen Potential and Temperature Swinburne

Distribution ratio in FeOx-SiO₂-CaO-MgO slag and metal as a function of oxygen partial pressure at 1573 K

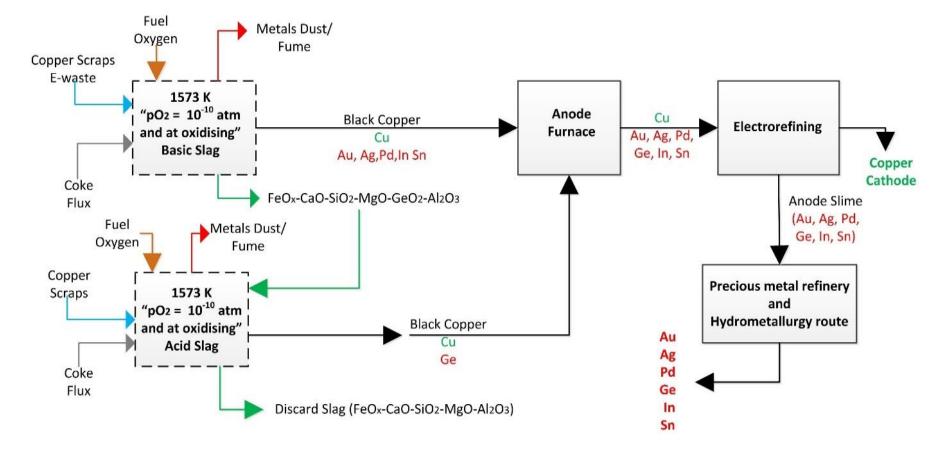
Distribution ratio in FeOx-SiO₂-CaO-MgO slag and metal as a function of temperature

$$L_{Ge}^{S/m} = \frac{181}{75} \log p_{O_2} + \frac{61422}{T} - \frac{365}{36} \frac{Q^3}{Q^2} - \frac{115}{8}$$
$$L_{Pd}^{S/m} = \frac{74}{9999} \log p_{O_2} - \frac{724}{T} + \frac{8}{21} \frac{Q^3}{Q^2} + \frac{2}{5}$$
Science | technology | innovation | business | design

Shuva, M.A.H., Rhamdhani, M.A. et al., "Structural Analysis of Ge-containing Ferrous Calcium Silicate Magnesia Slag for Applications of Black Copper Smelting", TMS 2018, Phoenix Arizona.

Distribution data for trace valuable metals at Swinburne **black copper smelting conditions**

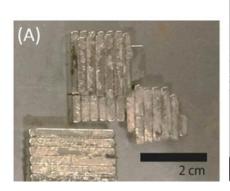
Table 6.8: Distribution data of minor metals with condition favourable for black copper smelting

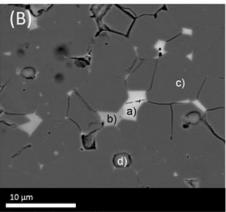

Target metal	Temperature, ° C (K)	p ₀₂ (atm)	Equilibrium time (hrs)	Suitable nature of slag	Maximum mass pet distributed in metal*	Maximum mass pct distributed in slag*	Ref.
Ge	1200 to 1350 (1473 - 1623)	10-7 -10-10	6	Acidic	93.58	4.63	Present study
Та	1400 to 1873 (1673-1873)	10 ⁻¹² - 10 ⁻¹⁶	Up to 24	Acidic	0.05	99.95	Present study
In	1300 (1573)	10 ⁻⁶ -10 ⁻⁸	16	Neutral	58.70	41.29	Anindya et al. (2014)
Pd	1200 to 1350 (1473-1623	10 ⁻⁷ -10 ⁻¹⁰	20	Basic	99.94	0.05	Present study
Sn	1300 (1573)	10 ⁻⁶ -10 ⁻⁸	16	Basic	88.29	11.70	Anindya et al. (2013)

*This is for equilibrium, not for different gas flows and operating conditions

- Shuva, M.A.H., Rhamdhani, M.A., et al., "Thermodynamics of Palladium (Pd) and Tantalum (Ta) Relevant to Secondary Copper Smelting", *Metallurgical and Materials Transactions B*, Vol.48 (1), 2017, pp.317-27.
- Shuva, M.A.H., Rhamdhani, M.A., et al., "Thermodynamics Behavior of Germanium during Equilibrium Reactions Between FeO_x-CaO-SiO₂-MgO Slag and Molten Copper", *Metallurgical and Materials Transactions B*, Vol 47, No.5, October 2016, pp. 2889-2903.

Conceptual Route for Industry



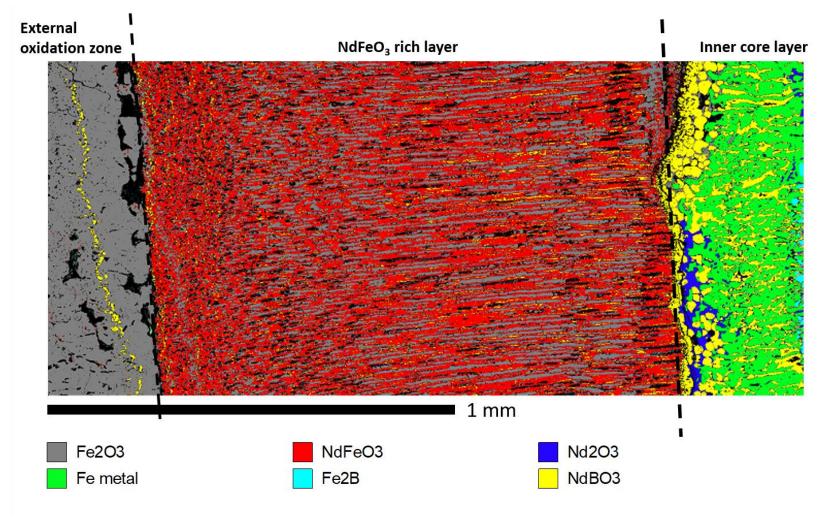

A conceptual route of e-waste recycling through black copper smelting

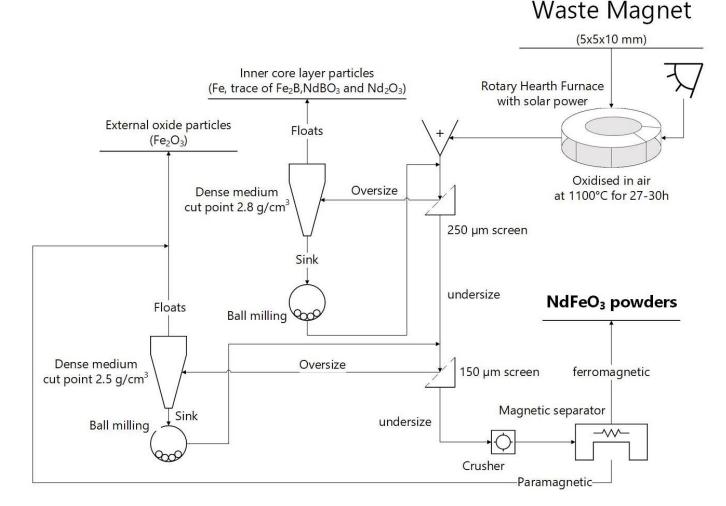
Recovery of Nd from Magnet as NdFeO₃

Swinburne

Solar Recycling of Rare Earth Elements from e-o-I Magnet as NdFeO₃ through Oxidation

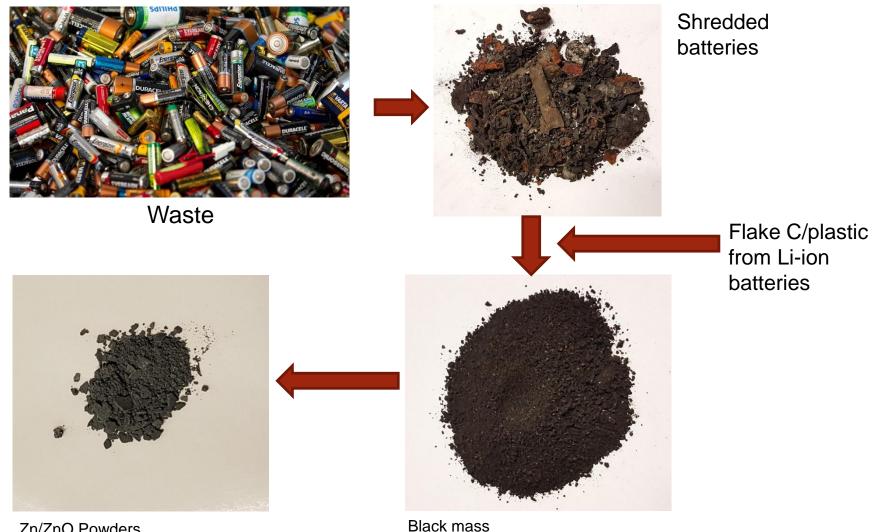
- Waste magnet from banknote printing process supplied by Note Printing Australia Ltd.
- Bulk samples (10 x 5 x 5 mm)




- Thermally demagnetized at T = 573 K
- Discontinuous isothermal approach
- Oxidised in air

Oxidised in air atmosphere at 1373 K, ~27 h

Solar Recycling of Rare Earth Elements from Magnet as NdFeO₃ through Oxidation



Solar Recycling of Rare Earth Elements from Magnet as NdFeO₃ through Oxidation

High Temperature Recycling of Alkaline Batteries

Swinburne

Zn/ZnO Powders \$65-\$1000/kg, depending on size and purity Black mass Low grade materials containing zinc oxide, manganese oxides, electrolyte

- Large potential for processing of Urban Ores
- There are **technical** and **non-technical** challenges for a sustainable processing of the alternative resources
- Need of a comprehensive approach addressing both of these challenges
 - Innovations in all sectors from science, technology, social, governmental policy to business will be vital in promoting the use of the alternative resources for maximized resource efficiency and wealth generation
 - Need expertise from different disciplines!!!!!!
- Optimised processing route will depend on a number of things that include the actual product, location, and other non technical aspects

Thank You !!!!!

SWINBURNE UNIVERSITY OF TECHNOLOGY

Prof M Akbar Rhamdhani <u>ARhamdhani@swin.edu.au</u>

CRICOS Provider 00111D